
5 Analog carrier modulation with noise

5.1 Noisy receiver model
Assume that the modulated signal x(t) is passed through an additive White Gaussian noise channel.
A noisy receiver model is illustrated in Fig. 16.
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Figure 16: Noisy receiver model

nW (t) is the realization of a white random process NW (t) with power spectral density N0

2

Watts/Hz, i.e.

E [NW (t)NW (u)] =
N0

2
δ(t − u) SNW

(f) =
N0

2

The bandpass filter is designed to pass the modulated signal undistorted (and also amplify it in
practice) but will cut noise power outside the frequency band of the modulated signal.

The input of the bandpass filter is given by

y(t) = x(t) + nW (t)

The output of the bandpass filter is given by

z(t) = x(t) + n(t)

where n(t) is the realization of the bandpass random process N(t).
Exercise: Draw the power spectral density of NW (t) and show that NW (t) has an infinite power.

Exercise: Draw the power spectral density of N(t) and show that N(t) is a band-limited ran-
dom process (band-limited noise) of power E [N 2(t)] = RN(0) = BT N0.
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Hence it is seen that the bandpass filter reduces the noise power.
We assume that the message signal m(t) is the realization of a stationary random process of

zero mean, whose power spectral density SM(f) is limited to a maximum frequency W . W is
referred as the message bandwidth. Let M(t) be the corresponding random process.

Example of the spectrum of M(t): (draw an example)

For the modulation studied in this course (AM, DSB-SC, SSB, VSB, FM, PM), the modulated
signal X(t) is a bandpass random process with bandwidth BT , whose spectrum is centered around
f0 with realization denoted x(t). f0 is defined as follows

f0 =







fc, AM,DSB-SC, FM, PM
fc − W

2
, lower side-band SSB

fc + W
2
, upper side-band SSB

Example of the spectrum of X(t): (draw an example)

Assessing noise performance:

Assume that the output of the demodulator can be written as

u(t) = m̆(t) + w(t)

where m̆(t) is a realization of the recovered message signal and w(t) is the noise component at the
output of the demodulator. The effect of w(t) can be assessed by calculating the Output-Signal-
to-noise ratio.

SNR0 =
Average power of the demodulated message signal

Average power of the noise measured at the receiver output
=

PM̆

PW

The output SNR is meaningful only if there is an additive relationship between the signal and noise
at the receiver output. So for FM or AM with envelope detection, we will consider low noise power
at the receiver input to obtain an approximate additive relationship.
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Since the output SNR depends on the modulation and the demodulation techniques used, to
obtain a fair comparison of several demodulation techniques, we should use

SNR0

SNRI

where SNRI is the Input-Signal-to-noise ratio defined as

SNRI =
Average power of the modulated message signal (at demodulator input)

Average power of the noise measured at the demodulator input
=

PR

PN

=
PX

N0BT

PR : Signal power at the receiver input (in absence of noise) = noiseless signal power at demodu-
lator input
PN : Average power of the filtered noise N(t)

Since PN depends on the modulation through its transmission bandwidth, to obtain a fair com-
parison of noise performance for several modulation schemes, SNRI is not appropriate, and the
baseband (channel) signal-to-noise ratio SNRb = SNRC should be used, where

SNRb = SNRC = Signal-to-noise ratio without modulation

5.2 Baseband reference system
A reference baseband system is obtained by passing a noisy message signal of power equal to the
power of the modulated signal through a low-pass filter of bandwidth equal to that of the message
signal as illustrated in Fig. 17.

nW (t)

m
′

(t)
LPF

W

v(t)

Figure 17: Baseband reference system

The output of the low-pass filter is given by

v(t) = m
′

(t) + n
′

(t)

where m
′

(t) has the same power as the modulated wave. Then

SNRb = SNRC =
Average power of the modulated signal

Average power of the noise in the message bandwidth
=

PM
′

PN
′

=
PR

N0W
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5.3 SNR’s for linear modulations with coherent detection
Exercise: Draw a block diagram of a noisy receiver model with coherent detection.

y(t) = x(t) + nW (t) (Received signal)
z(t) = x(t) + n(t) (Output of bandpass filter) (16)
x(t) = xI(t) cos(2πfct) − xQ(t) sin(2πfct)

n(t) = nI(t) cos(2πf0t) − nQ(t) sin(2πf0t) Rice representation

Note that lowercase letters denote realizations of the random processes denoted by capital letters.
Exercise: Draw the power spectral densities of NI(t) and NQ(t)

a) Input signal power: PR

Let us assume that XI(t) and XQ(t) are jointly wide-sense stationary with constant means KI and
KQ.

Exercise: Verify that for AM, DSB-SC, SSB and VSB XI(t) and XQ(t) are jointly wide-sense
stationary with constant mean.

Hint: Recall that M(t) is assumed to a WSS random process with zero mean and WSS station-
arity is preserved by linear time-invariant filtering. Note that XI(t) is zero mean except for AM
modulation due to the DC component.
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To find the received power PR, we set nW (t) = 0 in (16) and calculate the power of the signal
left. If nW (t) = 0 then

n(t) = 0 =⇒ z(t) = x(t)

Hence

PR = PZ = PX = lim
T→∞

1

2T

∫ T

−T

E
[
X2(t)

]
dt

In order to simplify PR let us show that X(t) is a wide-sense cyclo stationary random process.

E [X(t)] = E [XI(t)] cos(2πfct) − E [XQ(t)] sin(2πfct) = KI cos(2πfct) − KQ sin(2πfct)

where KI and KQ are constants. Therefore the mean of X(t) is periodic with period 1/fc.

E [X(t + τ)X(t)] = E
[(

XI(t + τ) cos(2πfc(t + τ)) − XQ(t + τ) sin(2πfc(t + τ))
)
·

(
XI(t) cos(2πfct) − XQ(t) sin(2πfct)

)]

= RXI
(τ) cos(2πfc(t + τ)) cos(2πfct) − RXIXQ

(τ) cos(2πfc(t + τ)) sin(2πfct)

− RXQXI
(τ) sin(2πfc(t + τ)) cos(2πfct) + RXQ

(τ) sin(2πfc(t + τ)) sin(2πfct)

=
1

2
RXI

(τ) [cos(2πfc(2t + τ)) + cos(2πfcτ)]

− 1

2
RXIXQ

(τ) [sin(2πfc(2t + τ)) − sin(2πfcτ)]

− 1

2
RXQXI

(τ) [sin(2πfc(2t + τ)) + sin(2πfcτ)]

− 1

2
RXQ

(τ) [cos(2πfc(2t + τ)) − cos(2πfcτ)]

Hence it is seen that E [X(t + τ)X(t)] is periodic with period 1/2fc. Hence the common period
is 1/fc and X(t) is wide-sense cyclo stationary with power defined as

PX = Ra
X(0) =

1

2fc

∫ fc

−fc

E
[
X2(t)

]
dt

=
1

2
RXI

(0) cos(2πfc0) +
1

2
RXIXQ

(0) sin(2πfc0) −
1

2
RXQXI

(0) sin(2πfc0) +
1

2
RXQ

(0) cos(2πfc0)

=
1

2
RXI

(0) +
1

2
RXQ

(0) (17)

Note that (17) is only valid if XI(t) and XQ(t) are jointly wide-sense stationary with constant
means.

b) Input noise power: PN

PN = N0BT
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c) Input signal-to-noise ratio: SNRI

SNRI =
PR

N0BT

=
W

BT

SNRC

Recall that random processes with signal components are denoted by capital letters and their real-
izations are denoted by lowercase letters.

AM:
xI(t) = Ac (1 + µmn(t)) xQ(t) = 0 BT = 2W

RXI
(0) = E

[
X2

I (t)
]

= A2
c + A2

cµ
2E
[
M2

n(t)
]
+ 2AcµE [Mn(t)] = A2

c

(
1 + µ2PMn

)

RXQ
(0) = E

[
X2

Q(t)
]

= 0

SNRI =
1
2
A2

c (1 + k2
aPM)

2N0W
=

A2
c (1 + µ2PMn

)

4N0W
=

A2
c (1 + k2

aPM)

4N0W

where PM is the power of M(t), PMn
is the power of Mn(t) = M(t)

max |m(t)| given by

PMn
= E

[
M2

n(t)
]

=
PM

(max |M(t)|)2 =
1

(max |m(t)|)2

∫ ∞

−∞
SM(f)df

Note that we assume that max |m(t)| is the same for all the realizations of M(t). If this condition is
not satisfied, then the expression of SNRI should be expressed in terms of the amplitude sensitivity
ka and PM instead of the modulation index µ and PMn

.

DSB-SC:
xI(t) = Acm(t) xQ(t) = 0 BT = 2W

RXI
(0) = E

[
X2

I (t)
]

= A2
cE
[
M2(t)

]
= A2

cPM

RXQ
(0) = E

[
X2

Q(t)
]

= 0

SNRI =
A2

cPM

4N0W

where PM is the power of M(t) given by

PM = E
[
M2(t)

]
=

∫ ∞

−∞
SM(f)df

SSB:
xI(t) =

Ac

2
m(t) xQ(t) = ±Ac

2
m̂(t) BT = W
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RXI
(0) = E

[
X2

I (t)
]

=
A2

c

4
E
[
M2(t)

]
=

A2
c

4
PM

RXQ
(0) = E

[
X2

Q(t)
]

=
A2

c

4
E
[

M̂2(t)
]

=
A2

c

4
RM̂(0) =

A2
c

4
RM(0) =

A2
c

4
PM

SNRI =
A2

c

4
PM

N0W
=

A2
cPM

4N0W

d) Output signal power

By definition the center frequency of the bandpass filter can be written as

f0 = fc + α

where −BT

2
≤ α ≤ BT

2
, depending on the modulation format.

The output of the bandpass filter is given by

z(t) = xI(t) cos(2πfct) − xQ(t) sin(2πfct) + nI(t) cos
(
2π(fc + α)t

)
− nQ(t) sin

(
2π(fc + α)t

)

=
[
xI(t) + nI(t) cos(2παt) − nQ(t) sin(2παt)

]
cos(2πfct)

−
[
xQ(t) + nI(t) sin(2παt) + nQ(t) cos(2παt)

]
sin(2πfct)

The output of the multiplier is given by

v(t) = z(t) cos(2πfct)

=
1

2

[
xI(t) + nI(t) cos(2παt) − nQ(t) sin(2παt)

]

+
1

2

[
xI(t) + nI(t) cos(2παt) − nQ(t) sin(2παt)

]
cos(4πfct)

− 1

2

[
xQ(t) + nI(t) sin(2παt) + nQ(t) cos(2παt)

]
sin(4πfct)

The output of the low-pass filter is given by

u(t) =
1

2

[
xI(t) + nI(t) cos(2παt) − nQ(t) sin(2παt)

]
(explain)

Note that for AM, the actual demodulator includes a DC block after the low-pass filter, so the
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demodulator output for AM is

u
′

(t) =
Ac

2
kam(t) +

1

2
nI(t) =

Ac

2
µmn(t) +

1

2
nI(t)

since f0 = fc =⇒ α = 0.
The output signal power is obtained by assuming nW (t) = 0 thus n(t) = nI(t) = nQ(t) = 0.

u(t) =
1

2
xI(t)αt)

u
′

(t) =
Ac

2
kam(t) =

Ac

2
µmn(t) AM

The output signal power is given by

PSO
=

RXI
(0)

4
DSB-SC,SSB, VSB

PSO
=

A2
ck

2
a

4
PM =

A2
cµ

2

4
PMn

AM

e) Output noise power

Let us consider separately AM, DSB-SC and SSB, VSB.
For AM and DSB-SC, f0 = fc so α = 0. To find the output noise power we assume m(t) = 0,

therefore

u(t) =
1

2
nI(t) DSB-SC

u
′

(t) =
1

2
nI(t) AM

The output noise power is given by

PN0
=

RNI
(0)

4
=

N0W

2

For SSB and VSB, α 6= 0,

u(t) =
1

2

[
nI(t) cos(2παt) − nQ(t) sin(2παt)

]
=

1

2

[
n

′

I(t) − n
′

Q(t)
]

Since NI(t) and NQ(t) are zero mean WSS stationary, let us show that N
′

I(t) and N
′

Q(t) are zero
mean wide-sense cyclo stationary and uncorrelated.

E
[

N
′

I(t)
]

= E [NI(t)] cos(2παt) = 0

E
[

N
′

Q(t)
]

= E [NQ(t)] sin(2παt) = 0

63



RN
′

I
(t + τ, t) = E

[

N
′

I(t + τ)N
′

I(t)
]

= RNI
(τ) cos(2πα(t + τ)

)
cos
(
2παt

)
periodic with period

1

2α

RN
′

Q
(t + τ, t) = E

[

N
′

Q(t + τ)N
′

Q(t)
]

= RNQ
(τ) sin

(
2πα(t + τ)

)
sin
(
2παt

)
periodic with period

1

2α

RN
′

I
N

′

Q
(t + τ, t) = E

[

N
′

I(t + τ)N
′

Q(t)
]

= RNINQ
(τ) cos

(
2πα(t + τ)

)
sin
(
2παt

)

= 0 since NI(t) and NQ(t) are uncorrelated and zero mean

Their “average” autocorrelation functions are given by

Ra
N

′

I

(τ) = 2α

∫ − 1

4α

− 1

4α

RN
′

I
(t + τ, t)dt =

RNI
(τ)

2
cos(2πατ)

Ra
N

′

Q

(τ) =
RNQ

(τ)

2
cos(2πατ) =

RNI
(τ)

2
cos(2πατ) = Ra

N
′

I

(τ)

Since N
′

I(t) and N
′

Q(t) are uncorrelated and wide-sense stationary, u(t) in absence of message
signal is also wide-sense cyclo stationary. Its autocorrelation function at (t, t) is given by

RU(t, t) = E
[
U2(t)

]
=

1

4
E
[

N
′2
I (t)

]

+
1

4
E
[

N
′2
I (t)

]

− 1

4
E
[

N
′

I(t)N
′

Q(t)
]

=
1

4
E
[

N
′2
I (t)

]

+
1

4
E
[

N
′2
I (t)

]

Hence the output noise power is

PNO
= Ra

U(0) =
1

4
Ra

N
′

I

(0) +
1

4
Ra

N
′

I

(0) =
1

2
Ra

N
′

I

(0) =
RNI

(0)

4
=

N0BT

4

Exercise: Find the power spectral density of N
′

I and N
′

Q for SSB and verify that the output noise
power for SSB is given by

PNO
=

N0W

4
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f) SNR’s

AM:

SNRI =
SNRC

2
=

A2
c (1 + k2

aPM)

4N0W
=

A2
c (1 + µ2PMn

)

4N0W

SNRO =
A2

ck
2
aPM

2N0W
=

A2
cµ

2PMn

2N0W

SNRO =
2µ2PMn

1 + µ2PMn

SNRI = 2νSNRI

= νSNRC

where ν (ν ≤ 1
2
) is the modulation efficiency given by

ν =
k2

aPM

1 + k2
aPM

=
µ2PMn

1 + µ2PMn

DSB-SC:

SNRI =
SNRC

2
=

A2
cPM

4N0W

SNRO =
A2

c

4
PM

N0W
2

=
A2

cPM

2N0W

SNRO = 2SNRI

= SNRC

SSB:

SNRI = SNRC =
A2

cPM

4N0W

SNRO =
A2

cPM

16
N0W

4

=
A2

cPM

4N0W

SNRO = SNRI

= SNRC

5.4 SNR’s for AM with envelope detection
Draw a block diagram of a noisy receiver model with envelope detection.
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The output of the bandpass filter is given by

z(t) = x(t) + n(t) = Ac (1 + kam(t)) cos(2πfct) + nI(t) cos(2πfct) − nQ(t) sin(2πfct)

The complex envelope of z(t) is given by

z̃(t) = Ac (1 + kam(t)) + nI(t) + jnQ(t)

The output of the envelope detector is

v(t) = |z̃(t)| =
[
(Ac (1 + kam(t)) + nI(t))

2 + n2
Q(t)

]1/2

a) high SNR Ac (1 + kam(t)) � |nI(t)|, |nQ(t)|
The output of the envelope detector is given by

v(t) = (Ac (1 + kam(t)) + nI(t))

[

1 +

(
nQ(t)

Ac (1 + kam(t)) + nI(t)

)2
]1/2

≈ Ac (1 + kam(t)) + nI(t)

The output of the DC block is given by

u
′

(t) = Ackam(t) + nI(t)

Hence the SNR’s are given by

SNRI =
PR

PN

=
A2

c

2
(1 + k2

aPM)

2N0W
=

A2
c (1 + µ2PMn

)

4N0W

SNRO =
PSO

PNO

=
A2

ck
2
aPM

2N0W
=

A2
cµ

2PMn

2N0W

= 2νSNRI = νSNRC

(same result as for coherent detection)

b) low SNR Ac (1 + kam(t)) � |nI(t)|, |nQ(t)|
Show that in that case the output of the envelope detector is badly corrupted by noise.
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5.5 SNR’s for angle modulation with noise

nW (t)

BPF

BT

z(t)y(t)x(t)

1

fc

u(t)
LPF

W

v(t)Angle
Dectector

Figure 18: Noisy receiver model for angle modulation

z(t) = x(t) + n(t)

= Ac cos
(
2πfct + ϕ(t)

)
+ nI(t) cos(2πfct) − nQ(t) sin(2πfct)

ϕ(t) = K

∫ t

−∞
m(τ)h(t − τ)dτ

Assuming no noise, we have

v(t) = K
′

m(t) (output of angle detector is proportional to m(t))

The lowpass filter is used to cut noise outside the frequency band of the recovered message signal.

a) Channel signal-to-noise ratio: SNRC

Input signal power:
Assume first that m(t) is deterministic, then the input signal power

Px = lim
T→∞

1

2T

∫ T

−T

A2
c cos2

(
2πfct + ϕ(t)

)
dt

= lim
T→∞

[
A2

c

2

1

2T

∫ T

−T

dt +
A2

c

2

1

2T

∫ T

−T

cos
(
4πfct + 2ϕ(t)

)
dt

]

=
A2

c

2
+

A2
c

2
lim

T→∞

1

2T

∫ T

−T

cos
(
4πfct + 2ϕ(t)

)
dt

Assume that fc � 1 and that ϕ(t) is slowly varying with respect to fc, then 4πfct + 2ϕ(t) ≈
4πfct + 2ϕ0 and

Px ≈ A2
c

2
+

A2
c

2
lim

T→∞

1

2T

∫ T

−T

cos
(
4πfct + 2ϕ0

)
dt
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≈ A2
c

2
+

A2
c

2
lim

T→∞

1

2T

1

4πfc

[
sin
(
4πfcT + 2ϕ0

)
+ sin

(
4πfcT − 2ϕ0

)]

≈ A2
c

2

Assume now that m(t) is the realization (sample function) of a stationary zero mean Gaussian
random process M(t) whose autocorrelation function is RM(τ). The angle modulated signal X(t)
is now a random process which is neither wide-sense stationary nor wide-sense cyclo-stationary.
However using generalization of Wiener-Khinchin theorem, its average autocorrelation function is
defined as

Ra
X(τ) = lim

T→∞

1

2T

∫ T

−T

RX(t + τ, t)dt

= A2
c lim

T→∞

1

2T

∫ T

−T

E
[
cos
(
2πfc(t + τ) + ϕ(t + τ)

)
cos
(
2πfct + ϕ(t)

)]
dt

=
A2

c

2
lim

T→∞

{
1

2T

∫ T

−T

E
[
cos
(
2πfc(2t + τ) + ϕ(t + τ) + ϕ(t)

)]
dt

+
1

2T

∫ T

−T

E
[
cos
(
2πfcτ + ϕ(t + τ) − ϕ(t)

)]
dt

}

=
A2

c

2
lim

T→∞

1

2T

∫ T

−T

E
[
cos
(
2πfcτ + ϕ(t + τ) − ϕ(t)

)]
dt

=
A2

c

2
lim

T→∞

1

2T

∫ T

−T

<
{
ej2πfcτE

[
ej[ϕ(t+τ)−ϕ(t)]

]}
dt

Since ϕ(t) is the output of a linear time invariant filter with input m(t), ϕ(t) is also a stationary
Gaussian random process with autocorrelation function Rϕ(τ). It can be shown that for fixed t,
Z(t) = ϕ(t + τ) − ϕ(t) is a zero-mean Gaussian random variable with variance

σ2
Z = 2Rϕ(0) − 2Rϕ(τ)

Therefore

E
[
ejZ(t)

]
= E

[
ejωZ(t)

]
∣
∣
∣
ω=1

= e−
1

2
ω2σ2

Z

∣
∣
∣
ω=1

= e−[Rϕ(0)−Rϕ(τ)]

And the average autocorrelation function of X(t) is given by

Ra
X(τ) =

A2
c

2
lim

T→∞

1

2T

∫ T

−T

<
{
ej2πfcτe−(Rϕ(0)−Rϕ(τ))

}
dt

=
A2

c

2
cos(2πfcτ)a(τ)
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with
a(τ) = E

[
ej(ϕ(t+τ)−ϕ(t))

]
= e−[Rϕ(0)−Rϕ(τ)]

The power of X(t) is given by

PX = Ra
X(0) =

A2
c

2

identical to the expression found when m(t) is deterministic.
Input noise power:

PN = N0BT

Noise power in the message bandwidth:

PN
′ = N0W

Input signal-to-noise ratio:

SNRI =
A2

c

2N0BT

Channel signal-to-noise ratio:

SNRC =
A2

c

2N0W

b) Output signal-to-noise ratio assuming a high Carrier-to-noise ratio: SNRO

High carrier-to-noise ratio is defined as:

Ac � rn(t) =
√

n2
I(t) + n2

Q(t)

The angle detector and the lowpass filter can be modeled as illustrated in Fig. 19.

z(t) v(t)Phase
Detector

z
′

(t)
ho(t)

Figure 19: Noisy receiver model for angle modulation

where the filter ho(t) has transfer function given by

Ho(f) =

{
1

H(f)
, |f | < W

0, else.

The phase detector yields an output γϕz(t) which is proportional to the phase of its input, where
ϕz(t) is the phase of z(t) defined as

ϕz(t) = arg [z̃(t)]
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and z̃(t) is the complex envelope of z(t). For simplicity, let us assume that the proportionality
constant is equal to 1. The output of the phase detector is given by

ϕz(t) = ϕ(t) + ε(t)

= Km(t) ∗ h(t) + ε(t)

The output of the filter ho(t) is given by

v(t) = Km(t) ∗ h(t) ∗ ho(t) + ε(t) ∗ ho(t)

Explain the chosen transfer function of ho(t) by considering first a noiseless case. Assume no
noise, i.e. n(t) = 0, hence

z(t) =

ϕz(t) =

v(t) = What is the desired output v(t) ?

Consider now the noisy case again, then

v(t) = Km(t) ∗ h(t) ∗ ho(t) + no(t) (18)

where
no(t) = ε(t) ∗ ho(t)

Hence from (18) we have the equivalent baseband model illustrated in Fig. 20.

m(t)
K

v(t)
ho(t)

ϕz(t)
h(t)

H(f)

ϕ(t)

ε(t)

Figure 20: Noisy receiver equivalent model with angle modulation.

Expression of ε(t):

z̃(t) = x̃(t) + ñ(t) = Ace
jϕ(t) + rn(t)ejθn(t)

z̃(t) = |z̃(t)|ejϕz(t)

ϕz(t) = ϕ(t) + ε(t)
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z(t)~

Ac

θn(t) ϕ(t)
r  (t)n

ε(t)

ϕ(t)

ϕ (t)z

ε(t) = phase  error n(t)~ r  (t)n|       | =

Re

Im

Figure 21: Phasor diagram for angle modulation with noise

Using the phasor diagram from Fig.21, show that

tan ε(t) =
rn(t) sin

(
θn(t) − ϕ(t)

)

Ac + rn(t) cos
(
θn(t) − ϕ(t)

)

Assuming high carrier-to-noise ratio

tan ε(t) ≈ rn(t)

Ac

sin
(
θn(t) − ϕ(t)

)
� 1

Therefore

tan ε(t) ≈ ε(t)
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≈ rn(t)

Ac

sin
(
θn(t) − ϕ(t)

)

=
rn(t)

Ac

sin
(
θn(t)

)
cos ϕ(t) − rn(t)

Ac

cos
(
θn(t)

)
sin ϕ(t)

=
nQ(t)

Ac

cos ϕ(t) − nI(t)

Ac

sin ϕ(t)

E [ε(t)] = 0

since nI(t) and nQ(t) are zero mean. Assume that m(t) is the realization of a WSS random process
M(t) independent of N(t), hence ϕ(t) is a WSS process independent of N(t). The autocorrelation
of ε(t) is given by

Rε(t + τ, t) = E [ε(t + τ)ε(t)]

=
1

A2
c

{
E [NQ(t + τ)NQ(t)] E

[
cos
(
ϕ(t + τ)

)
cos
(
ϕ(t)

)]

− E [NQ(t + τ)NI(t)] E
[
cos
(
ϕ(t + τ)

)
sin
(
ϕ(t)

)]

− E [NI(t + τ)NQ(t)] E
[
sin
(
ϕ(t + τ)

)
cos
(
ϕ(t)

)]

+ E [NI(t + τ)NI(t)] E
[
sin
(
ϕ(t + τ)

)
sin
(
ϕ(t)

)]}

=
1

A2
c

{
RNI

(τ)

2

(

E
[
cos
(
ϕ(t + τ) + ϕ(t)

)]
+ E

[
cos
(
ϕ(t + τ) − ϕ(t)

)])

+
RNQ

(τ)

2

(

E
[
cos
(
ϕ(t + τ) − ϕ(t)

)]
− E

[
cos
(
ϕ(t + τ) + ϕ(t)

)])
}

=
1

A2
c

RNI
(τ)E

[
cos
(
ϕ(t + τ) − ϕ(t)

)]

=
1

A2
c

RNI
(τ)<

{
E
[
ej(ϕ(t+τ)−ϕ(t))

]}
since RNINQ

(τ) = 0 and RNI
(τ) = RNQ

(τ)

=
RNI

(τ)

A2
c

a(τ) = Rε(τ)

where
a(τ) = <

{
E
[
ej(ϕ(t+τ)−ϕ(t))

]}

Note that if M(t) is Gaussian, a(τ) = e−[Rϕ(0)−Rϕ(τ)].
From Fig. 20, the output signal v(t) is given by

v(t) = Km(t) + no(t)

where no(t) = ε(t) ∗ ho(t). Therefore the output signal power is given by

PSO
= K2PM
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where PM is the power of the message signal m(t). The output noise power is

PNO
= E

[
n2

o(t)
]

=

∫ ∞

−∞
SNo

(f)df =

∫ ∞

−∞
|Ho(f)|2Sε(f)df =

∫ W

−W

|Ho(f)|2Sε(f)df

since Ho(f) = 0 for |f | > W . Therefore we only need to find the expression of Sε(f) for |f | ≤ W .
Let

A(f) = F {a(τ)}
Exercise: Assume that A(f) ≈ 0 for |f | > BT

2
and draw a typical graph of A(f).

Let us assume that W � BT

2
and A(f) ≈ 0 for |f | > BT

2
, then

Sε(f) = F {Rε(τ)} =
1

A2
c

SNI
(f) ∗ A(f) since Rε(τ) =

RNI
(τ)

A2
c

a(τ)

=
N0

A2
c

∫ BT
2

−BT
2

A(f − λ)dλ

=
N0

A2
c

∫ BT
2

+f

−BT
2

+f

A(u)du (u = f − λ)

≈ N0

A2
c

∫ BT
2

−BT
2

A(u)du assuming |f | ≤ W and W � BT

2

≈ N0

A2
c

∫ ∞

−∞
A(u)du assuming that |f | ≤ W and A(f) ≈ 0 for |f | >

BT

2

=
N0

A2
c

a(0) =
N0

A2
c

|f | ≤ W

Therefore since Ho(f) = 1
H(f)

for |f | ≤ W , the output noise power is given by

PNO
=

∫ W

−W

|Ho(f)|2Sε(f)df =
N0

A2
c

∫ W

−W

df

|H(f)|2

Output signal-to-noise ratio:

SNRO =
K2PM

N0

A2
c

∫ W

−W

df

|H(f)|2
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=
2K2PMW
∫ W

−W

df

|H(f)|2
SNRC using SNRC =

A2
c

2N0W

=
2β2PMW

|H(W )|2 (max |m(t)|)2

∫ W

−W

df

|H(f)|2
SNRC using β = K|H(W )|max |m(t)|

= λβ2PMn
SNRC

= 2λ(β + 1)β2PMn
SNRI using BT = 2W (β + 1) and SNRC =

BT

W
SNRI

where λ is defined as

λ =

{ |H(W )|2
2W

∫ W

−W

df

|H(f)|2
}−1

and PMn
= PM

(max |m(t)|)2 is the average-to-peak power ratio of the message signal or equivalently
the power content of the normalized message signal.

Example:

m(t) = Am cos(2πfmt) Am ≥ 0 =⇒ PM =
A2

m

2

The normalized message signal is

mn(t) =
m(t)

max |m(t)| = cos(2πfmt) =⇒ PMn
=

1

2

Frequency modulation:

H(f) =
1

j2πf
neglecting2 δ(f)

2

Thus

λ =

{(
1

2πW

)2
1

2W

∫ W

−W

(2πf)2 df

}−1

=

{
1

2W 3

∫ W

−W

f 2df

}−1

= 3

Phase modulation: PM
H(f) = 1 =⇒ λ = 1

2See part f of section 4.4 for the justification of the form of H(f).
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c) Output signal-to-noise ratio SNRO assuming a low Carrier-to-noise ratio:

Low Carrier-to-noise ratio: Ac � rn(t)
Let us write

ϕz(t) = θn(t) + ε
′

(t)

Interchanging the role of x̃(t) and ñ(t), it can be shown that

ϕz(t) ≈ θn(t) +
Ac

rn(t)
sin
(
ϕ(t) − θn(t)

)

Exercise: Draw a phasor digram of z̃(t) at two time instants t1 and t2 such that the phase of the
noise θn(t2) ≈ θn(t1) + 2π. Then the phase ϕz(t) will also change by 2π since it is dominated by
the phase θn(t).

If during an interval [t1, t2], ϕz(t) changes by 2π, the output signal may have a rapid degrada-
tion during [t1, t2] causing what is called FM clicks for FM modulation. For FM, Ho(f) = j2πf
corresponding to a differentiator.

v(t) = Km(t) +
dε(t)

dt

Exercise: draw dε(t)
dt

for an FM modulated signal when due to the noise ϕz(t) changes by 2π during
certain intervals corresponding to low-carrier-to-noise situations.

We define a threshold value of SNRC such that the high-carrier-to-noise ratio SNRO formula
applies. The threshold is defined as the minimum SNRC or equivalently carrier-to-noise ratio
SNRI yielding an output signal-to-noise ratio that is not significantly deteriorated from the value
predicted by the usual output signal-to-noise ratio formula.
Threshold SNRC value for FM:

SNRCT = 20(β + 1)
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SNRIT = 10

In [1, p. 338], SNRIT = 20 to correspond to practical observations, but the other threshold value
is more often used in text books.
FM with tone modulation:

For FM with tone modulation, i.e.

m(t) = cos(2πfmt)

it can be shown that

SNRO =

3

2
β2SNRC

1 +
12β

π
SNRC exp

{

− 1

2(β + 1)
SNRC

} (19)

If high carrier-to-noise ratio is assumed in (19), then we obtain

SNRO ≈ 3

2
β2SNRC

which agrees with the high carrier-to-noise ratio formula found previously (λ = 3 and PMn
= 1

2
).
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